Ergodic BSDEs under weak dissipative assumptions
نویسندگان
چکیده
In this paper we study ergodic backward stochastic differential equations (EBSDEs) dropping the strong dissipativity assumption needed in [12]. In other words we do not need to require the uniform exponential decay of the difference of two solutions of the underlying forward equation, which, on the contrary, is assumed to be non degenerate. We show existence of solutions by use of coupling estimates for a non-degenerate forward stochastic differential equations with bounded measurable non-linearity. Moreover we prove uniqueness of “Markovian” solutions exploiting the recurrence of the same class of forward equations. Applications are then given to the optimal ergodic control of stochastic partial differential equations and to the associated ergodic Hamilton-Jacobi-Bellman equations.
منابع مشابه
Ergodic BSDEs and related PDEs with Neumann boundary conditions under weak dissipative assumptions
We study a class of ergodic BSDEs related to PDEs with Neumann boundary conditions. The randomness of the driver is given by a forward process under weakly dissipative assumptions with an invertible and bounded diffusion matrix. Furthermore, this forward process is reflected in a convex subset of R not necessarily bounded. We study the link of such EBSDEs with PDEs and we apply our results to a...
متن کاملErgodic BSDEs and Optimal Ergodic Control in Banach Spaces
In this paper we introduce a new kind of Backward Stochastic Differential Equations, called ergodic BSDEs, which arise naturally in the study of optimal ergodic control. We study the existence, uniqueness and regularity of solution to ergodic BSDEs. Then we apply these results to the optimal ergodic control of a Banach valued stochastic state equation. We also establish the link between the erg...
متن کاملDiscrete Time Nonlinear Filters with Informative Observations Are Stable
Abstract The nonlinear filter associated with the discrete time signal-observation model (Xk,Yk) is known to forget its initial condition as k →∞ regardless of the observation structure when the signal possesses sufficiently strong ergodic properties. Conversely, it stands to reason that if the observations are sufficiently informative, then the nonlinear filter should forget its initial condit...
متن کاملDiscrete Time Nonlinear Filters with Regular Observations Are Always Stable
Abstract. The nonlinear filter associated with the discrete time signal-observation model (Xk, Yk) is known to forget its initial condition as k → ∞ regardless of the observation structure when the signal possesses sufficiently strong ergodic properties. Conversely, it stands to reason that if the observations are sufficiently informative, then the nonlinear filter should forget its initial con...
متن کاملRecurrent and Ergodic Properties of Adaptive MCMC
We will discuss the recurrence on the state space of the adaptive MCMC algorithm using some examples. We present the ergodicity properties of adaptive MCMC algorithms under the minimal recurrent assumptions, and show the Weak Law of Large Numbers under the same conditions. We will analyze the relationship between the recurrence on the product space of state space and parameter space and the erg...
متن کامل